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Abstract

A new and relatively simple method for the calculation of
the high-frequency resistance matrices of multiple coupled lines
is presented. The method is based on a generalization of
Wheeler's "incremental inductance rule” so as to apply to any
number of coupled lines.

A. Introduction

This paper relates to the calculation of the high-frequency
Tesistance matrices for multiple coupled lines. Such matrices are
needed for applications such as the accurate analysis of
microwave circuits which involve multiple coupled transmission
lines and the computation of crosstalk between interconnects in
high-speed digital circuits. A new and relatively simple means
for computing high-frequency resistance matrices is presented.
It can be shown that by adaptation of the "phenomenological
loss equivalence method” of Lee and Itoh, our high-frequency
resistance matrix results can be utilized to obtain approximate
resistance matrices for any frequency. [1]

In a classic paper [2] Wheeler introduced what he termed
as "the incremental inductance rule” (herein, IIR for short)
which is a powerful tool for computing the high—frequency
resistance of TEM-mode (or quasi-TEM-mode) single
transmission lines.

In this paper Wheeler's IIR is generalized for use in
computing the resistance matrices of multiple coupled lines.

B.  The Incremental Inductance Rule (IIR)

Wheeler's IIR formula for the distributed resistance of a
transmission line is (within a minus sign)

R=£l(:§an£] ohms/m )
0

where Rj is the surface resistance 1/7: fup of the conductor,
Ho and p are, respectively, the magnetic permeability in air and
in the conductor, f is the frequency, and p is the resistivity of
the conductor. Here the derivative dL/ dn is the incremental
change in distributed inductance due to an incremental
displacement of the conductor surfaces outward from the
surface's initial location. (Wheeler defines the derivative for
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inward displacement hence does not have the negative sign.) It
is interesting to compare the distributed resistance for the
microstrip example in Fig. 1 as computed using the IIR, with the
results computed using the program LINPAR in [3]. Here the
IIR Eq. (1) was evaltuated numerically using the methods of [4].
The IIR method yielded 9.25 ohms/m whereas LINPAR
predicted 8.12 ohms/m. Which value is the most accurate is not
certain. The methods of [4] have been found to give very
accurate values for L and-C so the numerical calculation of the
derivative is believed to also be quite accurate. LINPAR in [3]
uses a totally different approach which involves computing the
power loss from the current distribution. The current.
distribution is represented by a series of pulse basis functions.
These may not represent the current very well near the edges of
the strip, especially for some of the examples below where
LINPAR does not provide for the use of as many basis
functions as one might like,

C.  Ihe Generalized IIR for Multiple Coupled

Lines

An adequate explanation of the derivation of the
generalized IR for multiple coupled lines takes more space than
is available in this publication, so herein we shall only present
the results of the derivation, and a more complete paper will be
presented later. The derivation yields for the elements of the
resistance matrix of the coupled lines

Ry = ﬁ(ﬂ)

Ho\ Jn )jconductors #0 (2A)
and #;j perturbed
R; - -Ri-s— __a.ﬁ.’&
ik ek Mo Jdn Jlconductor #0 . (2B)
d alone perturbed

In these equations conductor #0 refers to the "ground" or
“reference” conductor. In microstrip conductor #0 is the ground
plane, and in stripline it is the two ground planes. In many
digital circuits the situation is more like that in Fig, 4 where any
ground plane is very remote compared to the conductor
spacings, and the voltages on lines #1, #2, and #3 are referenced
to the “common return line" which, herein, is designated as line
#0. As is seen from Eq. (2A), to compute, say, the self
resistance R22 for cases such as those in Figs. 2 to 4 only the
surfaces of conductors #2 and #0 are perturbed when computing
the derivative, while the other conductor surfaces are
unperturbed. When computing mutual resistances, such as Rig,
only the common conductor (or conductors) #0 is perturbed.
For example, when computing the mutual resistances
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numerically the derivatives are obtained by computing the
inductance matrix for the unperturbed structure and then
recomputing it with the surfaces of conductor #0 perturbed
outward a small amount. From these results all of the

derivatives needed for computing the mutual resistances are .

easily calculated.

Resistance matrices for a number of examples having
two or more lines were computed using the IIR method above
along with the methods in [4] for computing inductance values
for the numerical evaluation of the derivatives. Corresponding
calculations were also carried out using LINPAR [3]. All of the
calculations were made for 10 GHz. For the example defined in
Fig. 2 and its title we obtained

_ [2. 49 0. 37] _ [2.31 0. 35:’ 3
0.37 3.87 g 0.35 3.49 J; ;npAR
For the example in Fig. 3 we obtained

[6.13 0.99 0.48

R=[0.99 7.07 105
10.49 105 7.20}
[5.81 1.35 0.63 @

R=[135 6.76 145
10.63 145 6.62 npar

while for the example in Fig. 4 we obtained

74.08 29.03 28.03
R=|29.23 6587 26.46| . ®)
28.26 26.48 63.85);,

LINPAR is not set up to treat the type of structure in Fig. 4 so
we were not able to obtain a result for comparison in that case.

As can be seen from the foregoing examples the
resistance—matrix results from the IIR method and LINPAR are
reasonably well in agreement for purposes of practical
engineering. As to which results are the more accurate is
difficult to say at this point, though there appears to be basis for
the possibility that the IIR results might be the most accurate. It
is interesting to note that all of the mutual resistances in Eq. (5)
are fairly close in value, lying between 29.23 and 26.46. This is
because all of these mutual resistances are actually the distributed
resistance of line #0, while the differences in the various values
result from the somewhat different surrounding fields seen by
conductor #0 under the various conditions for which the
resistance is evaluated.
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Figure 1 A single, copper microstrip example in whichw=h =
2 mm, ¢t = 0.5 mm, €,= 13, and gy=1.
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Figure 2 A two-line microstrip example in which wy = 10, w2
=5,512=5k=5,and t=1, all in mm, with
€,=13 and ep=1. The conductors are copper.
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Figure 3 A three, copper microstrip example in which wy = 4,
wr=w3=3,812=s03=2,t1=fhp=n=1,and h =
2 all defined in mm analogously to Fig. 2.

Figure 4 An example involving three, gold lines with a
common return line. The dimensions in mm are wg =
1, wi=wz2 =w3 =0.6, 501 =512 =523 =0.50, 19 =
t1 =12 =t3 = 0.06, and 2 = 0.2, all defined
analogously to Fig. 2.



